
Questions or comments? �1

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Contents

Preface 3...

Section One - Common Issues 7...

Chapter 1 - Where to Begin 8...

Chapter 2 - SSL 12...

Chapter 3 - The R14 & R15 Error Codes 24...

Chapter 4 - The H12 Error Code 29..

Section Two - Scenarios 40...

Chapter 5 - The Magic of Heroku Postgres 41..

Chapter 6 - Using New Relic Effectively 52..

Chapter 7 - Customizing Heroku 61..

Conclusion 68..

Afterward 70..

Questions or comments? �2

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �3

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

I love talking with developers who run their applications on Heroku. I enjoy answering questions about
Heroku and providing tips or advice when I meet developers at conferences, user groups, or meet-
ups.

I've supported web applications in one form or another for the past ten years. On some, I’ve been the
developer and maintainer, but the majority of the applications I've seen have been in the official role
of support. During the last few years as a support engineer at Heroku, I've debugged or analyzed
over five thousand different applications. As such, I'm often able to look at an application having
issues on Heroku and know what the problem is in under a minute.

Also, I would consider myself to have a somewhat-unique perspective of Heroku. I wasn't a founder of
Heroku nor was I directly involved in the engineering, but I have an expert understanding of how
Heroku works as well as many thousands of near-daily interactions with Heroku customers and their
applications over the past few years. In short, I understand Heroku from the inside and out.

During my time supporting and debugging Heroku applications, a common set of issues and
questions has become all-too familiar. We've done our best at Heroku to simplify and clarify these
issues and questions but, given their nature, they will continue to be common. This guide will explain
and show how to debug these common issues you will likely encounter while running an application
on Heroku. This is not an official Heroku guide, rather it contains my personal perspective and
thoughts on running production applications on Heroku, based on years of experience. My goal with
this guide is to answer questions and provide advice as if you and I were to talk over a meal or drinks.

Some people claim that Heroku is a "black box" - I strongly disagree. At a basic level, Heroku is Unix.
There's nothing magical about debugging a Heroku application and, as you'll see, the tools and
methods I use to debug applications are the same tools and methods you have access to as a
Heroku customer.

Questions or comments? �4

http://rdegges.com/heroku-isnt-for-idiots
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Who is this guide for?

If you have a production application running on Heroku or if you maintain more than one application,
this guide is for you. Building and deploying an application is often the easiest part in the lifecycle of a
Heroku application. But what happens when your social coupon site running on Heroku gets featured
in TechCrunch? Or when mysterious timeouts seem to occur randomly for your application’s users?
Perhaps you’ve carefully designed and built the perfect iOS app, but didn’t pay too much attention to
the API application and database running on Heroku. Now the iOS app is gaining users quickly and
you’re not sure how to scale the parts running on Heroku.

I’ve written this guide for all of the above scenarios as well as common issues encountered while
running applications on Heroku. This can be used as a troubleshooting guide, but hopefully reading
through these tips, tools, and scenarios will help you avoid some common mistakes even when you
deploy new applications in the future.

You might be new to deploying and supporting applications on Heroku, or you might be a Heroku pro
with many long-running applications. My hope is that both new and seasoned Heroku customers will
at least pick up some time-saving tips and learn something new.

Heroku has a great source of service information called the Dev Center. I highly recommend reading
as many Dev Center articles as you can. This guide references the Dev Center, and builds on the
basic information found there. Links to Dev Center content are provided where appropriate.

Finally, in order to get the most out of this guide, you should already be familiar with deploying
applications on Heroku as well as have the Heroku Toolbelt installed. You will also need to be
comfortable running commands in the terminal. If you’re not familiar with basic Heroku concepts or
comfortable with deploying an application via the command line, I would suggest reading this
excellent Dev Center article on how Heroku works. 

Questions or comments? �5

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications
https://devcenter.heroku.com
https://toolbelt.heroku.com
https://devcenter.heroku.com/articles/how-heroku-works

Disclaimer

Although I am still employed by Heroku, no part of this guide is official documentation. Again, this
guide represents my personal experience and opinions on how to approach the issues. None of what
I’ve written in this guide is secret information, and all of the tips, tools, and processes are freely
available, whether in the Heroku Dev Center or elsewhere in the community.

With that taken care of, let's get started! 

Questions or comments? �6

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �7

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �8

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

When debugging an application experiencing problems on Heroku, I nearly always start with one
thing: the logs.

$ heroku logs -t

The logs command should output lines similar to the one below:

2013-05-08T00:28:23.205391+00:00 heroku[router]: at=info method=GET path=/ \
host=help.heroku.com fwd="210.149.23.47" dyno=web.1 connect=2ms service=111ms \
status=200 bytes=85

There's a lot of information in the line above. Throughout this guide I'll be showing sample log data.
To keep the examples readable, I'll often truncate information we're not concerned about. For
example, if we were interested in the service time in the log line above, I would use the following as a

more readable example:

heroku[router]: … fwd="210.149.23.47" dyno=web.1 connect=2ms service=111ms status=200

I like to run the heroku logs -t command in a terminal window and keep it open while I check other

aspects of the application. The -t flag will keep the command running and allow you to follow along

as the logs update. This is known as 'tailing the logs' and it's very useful for catching ongoing
exceptions, watching a deploy, checking for debug messages from the application, and generally
keeping an eye on the application.

In some cases, it may help to filter the logs using the -p flag, for process type:

$ heroku logs -t -p router

For example, the above will show only the log stream from the router. The process filter works on any
value inside the brackets (heroku[router] in the above example) after the timestamp.

Questions or comments? �9

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

It's also possible to filter on the source, which uses the -s flag and is based on the value outside the

brackets:

$ heroku logs -t -s heroku

The above command will show only events in the log stream from heroku[…], and none from the
application itself.

Once the logs command is running, I look for certain indications of a problem. The most obvious is a
stack trace from a dyno crashing. If I see a stack trace, debugging it locally is the next step. If no
stack trace is present, I'll look for other indicators, such as Heroku-specific error messages like H12
or R14 (more on these later).

Logs are the most important part of debugging an app. So important that I recommend using a
logging add-on such as Papertrail. Papertrail will store logs off-site which allows for later review. The
reason this is useful is because the Heroku Logplex system provides a log stream for every
application, but only keeps the last 1500 lines. Once the lines are replaced they are gone forever
unless you have a logging add-on, or are storing the logs elsewhere using a syslog drain.

There is more information on logging, including syslog drains in the Dev Center logging article.

Next, if checking the logs does not reveal any immediate problem, I'll run a command to list the active
processes:

$ heroku ps

This will show if processes are running or if they are in a crashed state.

$ heroku ps
=== web (1X): `bundle exec unicorn -p $PORT -c ./config/unicorn.rb`
web.1: up 2013/05/07 18:44:38 (~ 49m ago)

Questions or comments? �10

https://addons.heroku.com/papertrail
https://devcenter.heroku.com/articles/logging
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

The above web dyno is running correctly. If it were crashed, the output would look like this:

$ heroku ps
=== web (1X): `bundle exec unicorn -p $PORT -c ./config/unicorn.rb`
web.1: crashed 2013/05/07 19:46:38 (~ 49m ago)

You might also see a corresponding line in the logs noting a dyno has crashed:

heroku[web.1]: State changed from starting to crashed

If a dyno is crashed, I will attempt to restart it and watch the logs to see if I can get a stack trace to
look over:

$ heroku ps:restart web

The above command will restart all web dynos for the app. Since I'm tailing the logs, I'll be able to
watch while the web dynos restart and, if they are crashing, I should find some clues (and hopefully a
stack trace) in the logs.

Summary

As you can see, using the heroku logs and heroku ps commands are the easiest place to start when

debugging or investigating an application running on Heroku. If there is something wrong with the
application, looking over the output of both commands will usually provide enough clues to know
where to look next.

In the following chapters, we'll look at some common problems that may show up for any application
running on Heroku. While you work through the examples, be sure to keep a terminal window open
and tail the logs of the application you are working with.

Questions or comments? �11

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �12

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

SSL is a complex technology. It can be extremely confusing to set up your first SSL certificate, and
sometimes, even when you know the ins-and-outs of SSL, it's still confusing. To make things worse,
SSL is a technology that will sometimes appear to be working correctly, when subtle problems still
actually exist and your application is not fully secure.

Heroku has done a lot behind-the-scenes to make the process of installing and maintaining an SSL
certificate easier, but there are still plenty of confusing steps during the SSL process. For instance,
you need a private key in order to get a new SSL certificate from a provider. But what's a private key,
and how is one created?

Another confusing issue is that of the SSL provider versus Heroku: Heroku will host and serve an SSL
certificate for your application; but you will need a third-party SSL provider to create and sign the
actual SSL certificate for your application's domain(s).

Before we get into debugging SSL, let's start with the basic SSL process on Heroku.

SSL on Heroku

By default, all applications on Heroku have SSL support, provided you use the full Heroku application
name:

https://application_name.herokuapp.com

This is possible because Heroku has a wildcard SSL certificate - *.herokuapp.com - that covers any
subdomain (and thus application) running on Heroku.

Of course if you have a custom domain needing SSL, ‘www.mydomain.com’ for example, the above
will not work. For SSL to be enabled for the custom domain attached to an application, you will first
need to install the ssl:endpoint add-on. Here's the command:

$ heroku addons:add ssl:endpoint

Questions or comments? �13

https://devcenter.heroku.com/articles/ssl-endpoint
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

At this point, you can either buy an SSL certificate, or use a self-signed certificate. If you’re not ready
to buy a new certificate, but need SSL for testing, I suggest a service called
SelfSignedCertificate.com. Creating a self-signed certificate via this service is simple, and the
resulting files will easily work with the heroku certs:add command.

If you’re ready for a valid, trusted SSL certificate, there are a few steps you will need to take.

First, you will need at least three files:

1. A CSR - the Certificate Signing Request is a small file containing information about your
application to be used by an SSL provider when creating the new SSL certificate.

2. A private key - this cryptographic key is used to verify both the CSR and the final SSL certificate.

3. A signed SSL certificate generated with both the CSR and private key. The creation of this file is
what you pay an SSL provider for.

This may sound complex, but the end result is that you need the private key file and the new SSL
certificate file to enable SSL on the ssl:endpoint add-on. Heroku has a good Dev Center article
covering the entire SSL process here.

The Dev Center article outlines the process of creating a private key and a CSR via the openssl

command. This process can be confusing if you're not familiar with the ins-and-outs of openssl.

If you're not familiar with openssl or comfortable generating your own private key and CSR, you can

easily do so at CSRBuddy.com. CSRBuddy is a project I’m involved with, which was created after
seeing too many Heroku customers struggle with the private key and CSR-generation process.

Once you have the CSR and private key files, you will then use the CSR when ordering a new SSL
certificate from an SSL provider. I don't have any specific recommendations for an SSL provider, but
most any provider will work with Heroku. There are two key things to remember during the process of

Questions or comments? �14

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications
http://www.selfsignedcertificate.com
https://devcenter.heroku.com/articles/ssl
https://www.CSRBuddy.com

ordering an SSL certificate. First, have the CSR file handy, as you will either need to attach it to an
order form, or paste the contents of the file into a form. Second, when asked, the server type needs to
be either 'Nginx' or 'Apache'. Either server type will work with Heroku.

When you've completed the process of ordering an SSL certificate and have the new certificate file,
you are ready to enable SSL support in your application:

$ heroku certs:add server.crt private_key.txt

Once the heroku certs:add command is successful, you can verify the correct setup via the following

command:

$ heroku certs
Endpoint Common Name(s) Expires Trusted
------------------------ ------------------------------ -------------------- -------
hyogo-1003.herokussl.com www.csrbuddy.com, csrbuddy.com 2013-06-06 23:59 UTC True

Notice the value in the Endpoint column. You will need to make sure DNS for your custom domain

points to this address. This can be accomplished by setting up a CNAME for your domain to the new
endpoint address:

www.csrbuddy.com CNAME hyogo-1003.herokussl.com

It’s worth noting that applications located in the Europe region will not have a distinct herokussl.com

endpoint URL. For these applications, the endpoint URL will just be the app_name.herokuapp.com

domain. The heroku certs command will reflect this difference.

Now that we've covered the basics, let's look at debugging a few common SSL issues.

Questions or comments? �15

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

DNS and the 'dig' command

In order for SSL to function, DNS for your custom domain and subdomains must be configured
correctly. How can you check and verify DNS settings? There is a nice command line tool called dig

that makes checking DNS configuration easy.

Here's a sample of the dig command for the above mentioned CSRBuddy.com application:

$ dig www.csrbuddy.com

; <<>> DiG 9.8.3-P1 <<>> www.csrbuddy.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 30790
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.csrbuddy.com. IN A

;; ANSWER SECTION:
www.csrbuddy.com. 1800 IN CNAME hyogo-1003.herokussl.com.
hyogo-1003.herokussl.com. 150 IN CNAME elb003055-1983386325 ...
elb003055-1983386325.us-east-1.elb.amazonaws.com. 60 IN A 50.19.111.122
elb003055-1983386325.us-east-1.elb.amazonaws.com. 60 IN A 174.129.210.143
elb003055-1983386325.us-east-1.elb.amazonaws.com. 60 IN A 107.22.234.193

;; Query time: 102 msec
;; SERVER: 192.168.1.1#53(192.168.1.1)
;; WHEN: Tue Jun 4 19:20:57 2013
;; MSG SIZE rcvd: 176

The important part in the above output is the ;; ANSWER SECTION:. You can see that www.csrbuddy.com is
correctly configured as a CNAME to hyogo-1003.herokussl.com, which then resolves to a set of IP

addresses.

Does the above output seem too verbose or confusing? You can use the following option to keep it
simple:

Questions or comments? �16

http://www.CSRBuddy.com
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

$ dig +short www.csrbuddy.com
hyogo-1003.herokussl.com.
elb003055-1983386325.us-east-1.elb.amazonaws.com.
107.22.234.193
50.19.111.122
174.129.210.143

The important information is present, but nothing else.

The dig command is extremely valuable when it comes to checking and debugging SSL and DNS

issues on Heroku. I make use of it nearly every day, and it's worth learning the basics of dig.

Questions or comments? �17

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Serving the wrong certificate

One issue you may run into when setting up SSL is that the browser will report the certificate does not
match the domain.

Perhaps you have just added a new SSL certificate via the heroku certs:add command and you are

testing it, but getting this error in the browser:

�

What is causing this? The certificate appears to be correct, and is visible via the heroku certs
command:

$ heroku certs
Endpoint Common Name(s) Expires Trusted
------------------------ ------------------------------ -------------------- -------
hyogo-1003.herokussl.com www.csrbuddy.com, csrbuddy.com 2013-06-06 23:59 UTC True

Let's check the DNS settings again for this application with the dig command:

Questions or comments? �18

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

$ dig www.csrbuddy.com

; <<>> DiG 9.8.3-P1 <<>> www.csrbuddy.com
;; global options: +cmd
;; Got answer:
;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 52672
;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 0

;; QUESTION SECTION:
;www.csrbuddy.com. IN A

;; ANSWER SECTION:
www.csrbuddy.com. 1751 IN CNAME csrbuddy.herokuapp.com.
csrbuddy.herokuapp.com. 11 IN A 174.129.225.36
...

See how www.csrbuddy.com is still a CNAME to csrbuddy.herokuapp.com? This is why the Heroku wildcard

certificate is being served and causing the browser to report an error. Once we update the DNS
settings to point to the actual ssl:endpoint, everything will work:

$ heroku certs
Endpoint Common Name(s) Expires Trusted
------------------------ ------------------------------ -------------------- -------
hyogo-1003.herokussl.com www.csrbuddy.com, csrbuddy.com 2013-06-06 23:59 UTC True

Notice the 'Endpoint' value above is hyogo-1003.herokussl.com. We need to adjust DNS settings so

www.csrbuddy.com is a CNAME to this endpoint:

$ dig +short www.csrbuddy.com
hyogo-1003.herokussl.com.
elb003055-1983386325.us-east-1.elb.amazonaws.com.
107.22.234.193
50.19.111.122
174.129.210.143

Questions or comments? �19

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Working with an existing SSL Certificate

If your application is using an SSL certificate that has expired or will soon expire, you will need to
update it. To check the current status of an SSL certificate, you can use either the heroku certs or

heroku certs:info commands:

$ heroku certs:info
Fetching SSL Endpoint hyogo-1003.herokussl.com info for csrbuddy... done
Certificate details:
Common Name(s): csrbuddy.com

www.csrbuddy.com

Expires At: 2013-06-06 23:59 UTC
Issuer: /OU=Domain Control Validated/OU=PositiveSSL/CN=www.csrbuddy.com
Starts At: 2012-06-06 00:00 UTC
Subject: /OU=Domain Control Validated/OU=PositiveSSL/CN=www.csrbuddy.com
SSL certificate is verified by a root authority.

In the above output, we can see the dates during which the certificate is valid. As it happened, while
writing this chapter, I noticed the SSL certificate for CSRBuddy.com was nearing its expiration date.
Here’s how I updated the ssl:endpoint with a new certificate, using the heroku certs command.

The actual update command is easy enough: heroku certs:update CERT KEY

But what happens if you do not have access to the private key? Perhaps you lost or deleted it during
the past year.

In that case, it's best to start over, generating a new private key and CSR yourself or using
CSRBuddy.com. In fact, that's what I've done for the actual SSL certificate for CSRBuddy. I used
CSRBuddy to generate its own CSR and private key. There's nothing wrong with starting the SSL
process over. I believe it's more secure to rotate the private key each year, as opposed to re-using it. I
submitted the new CSR to the SSL provider and received a new SSL certificate within a few minutes.

Once you have the new SSL certificate, it's a simple command to update the existing SSL certificate
associated with the application:

Questions or comments? �20

https://www.CSRBuddy.com
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

$ heroku certs:update www_csrbuddy_com.crt private_key.key

Resolving trust chain... done
Updating SSL Endpoint hyogo-1003.herokussl.com info for csrbuddy... done

Updated certificate details:
Common Name(s): csrbuddy.com

 www.csrbuddy.com

Expires At: 2014-06-07 23:59 UTC

Issuer: /OU=Domain Control Validated/OU=PositiveSSL/CN=www.csrbuddy.com

Starts At: 2013-06-04 00:00 UTC
Subject: /OU=Domain Control Validated/OU=PositiveSSL/CN=www.csrbuddy.com

SSL certificate is verified by a root authority.

In the above output, notice the second line - 'Resolving trust chain... done'. This is actually a very nice
feature that Heroku added to the SSL Endpoint add-on. Before, you would have had to worry about
intermediate certificate chains, correct order, and multiple certificate files. Now, Heroku takes care of
all that for you, so you only need a valid SSL certificate and matching private key. This one feature
saved many hours of customer (and Heroku) frustration when implemented.

Verifying an SSL certificate is working

There are times where an SSL certificate is installed, the heroku certs command shows everything is
correct, DNS settings are correct, yet the browser will still report something is wrong with an SSL
certificate.

In this case, I usually use a third-party service called SSLShopper.com to check the certificate.

Questions or comments? �21

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications
http://www.sslshopper.com/ssl-checker.html

The SSL Checker from SSLShopper.com is a simple way to check the validity of an SSL certificate,
including expiration date and valid intermediate certificates. Here's an example:

Questions or comments? �22

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Summary

Hopefully these tips and tools will provide clarity to the SSL process on Heroku. And the next time one
of your SSL certificates expires, updating it won’t be such a daunting task.

Questions or comments? �23

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �24

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

If you see an R14 error in your application's logs, don't panic - you're not the only one! After H12, R14
is probably the most common error on Heroku. I like to think of R14 as a warning (though serious),
and R15 as the actual error.

First, it's worth noting that each dyno running on Heroku is allocated a set of resources on the
underlying instance - disk space, memory, and CPU. R14 and R15 errors specifically deal with RAM
usage by a dyno. With the default 1X dyno, the memory limit is set at 512 MB of RAM. The larger 2X
dyno is allocated 1024 MB of RAM, double that of the 1X dyno. You can read more about dyno sizes
here.

With the above limits in mind, an R14 error is a warning from the Heroku dyno manager that a dyno is
using more than its fair share of RAM. This causes the dyno to swap RAM to disk and severely
degrades performance. Put simply, R14s directly impact the performance of an application by causing
a dyno to run more slowly. This in turn can lead to other errors (such as an H12) if the dyno slows
down too much.

Here's what an R14 will look like in your application's logs. Note the mem=533M:

heroku[web.1]: Process running mem=533M(104.3%)
heroku[web.1]: Error R14 (Memory quota exceeded)

In the above example, the web.1 dyno is using 533 MB of RAM, which is 104.3% of the 512 MB limit.

Normally you will not need to worry about physical resources such as RAM on Heroku, but if an
application has a memory leak or is written in such a way as to be memory-intensive, you will see the
R14 error in the logs.

Once a dyno uses 300% of the available RAM, the dyno will automatically be killed via the SIGKILL
signal and an R15 error will show up in the logs. The dyno will then be restarted.

This is a typical R15 error:

Questions or comments? �25

https://devcenter.heroku.com/articles/dyno-size
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

heroku[web.1]: Process running mem=2565MB(501.0%)
heroku[web.1]: Error R15 (Memory quota vastly exceeded)
heroku[web.1]: Stopping process with SIGKILL
heroku[web.1]: Process exited

R15 errors are particularly bad because the dyno is killed abruptly. Any processes running within the
dyno are terminated immediately. In the case of a web dyno, this will often cause an error to be sent
back to the client. If a worker dyno receives an R15, any work being done will be immediately
stopped, which can lead to other problems.

Keep in mind that an R15 error is almost always related to a memory leak. With that in mind, what is
the best way to debug R14 and R15 errors?

To start, it's easiest to run the application locally and monitor RAM usage of the local-running
processes. If you suspect a certain action or path through the application causes RAM usage to
spike, simulate that locally. By doing this, you should be able to determine which objects or methods
are using large amounts of RAM and refactor code where necessary.

If you are using OS X to debug locally, the built-in OS X Activity Monitor is a good utility to track RAM
usage. Boot your application locally, mirroring production as closely as you can (including using
production data, if possible). Once running, search for the process type in Activity Monitor, as seen
here:

�

Note the Ruby process running the local Rails application is using ~100 MB of RAM. If you notice this
number increase over time, or when a specific action is processed, it will help identify where the
memory leak is.

Questions or comments? �26

https://devcenter.heroku.com/articles/heroku-postgres-import-export
https://devcenter.heroku.com/articles/heroku-postgres-import-export
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

If Activity Monitor is not helping, the next step is to use a library such as Oink or Heapy. Both are
language-specific, but the general idea is to output memory usage to the logs and analyze the
information later. When using Oink or a similar tool, you will want to make use of a syslog drain or a
logging add-on such as Papertrail, to capture log data for later review.

It may also help to step back and analyze how the application is using data. For instance, if you have
a single worker dyno that is churning through a million records and constantly generating R14 errors,
it's time to upgrade to 2X worker dynos or split the work amongst two or more workers. The same
goes for web requests - loading too much data at once inside a single web request is a common
cause of R14s. Pagination will help in this case.

The above steps are great for investigating a memory leak once you are aware of the problem, but
what happens when the memory leak or underlying issue using too much RAM is more subtle? The
culprit is often a complex bug or scenario that starts slowly but ultimately leads to increased RAM
usage over a longer period of time. Because of this, it may help to track the dyno RAM usage over
time using the log-runtime-metrics feature. This handy Heroku Labs feature will emit dyno resource

usage to the application log stream:

heroku[web.1]: … measure=load_avg_15m val=0.16
heroku[web.1]: … measure=memory_total val=96.79 units=MB
heroku[web.1]: … measure=memory_cache val=0.01 units=MB
heroku[web.1]: … measure=load_avg_1m val=0.04
heroku[web.1]: … measure=memory_pgpgout val=103655 units=pages
heroku[web.1]: … measure=memory_rss val=96.77 units=MB
heroku[web.1]: … measure=load_avg_5m val=0.15
heroku[web.1]: … measure=memory_swap val=0.00 units=MB
heroku[web.1]: … measure=memory_pgpgin val=128432 units=pages

In the above output, the key value related to R14s and R15s is the measure=memory_swap which has a

val=0.00, indicating no swap is being used by the dyno. If the value were to increase over time or
suddenly, it would indicate the dyno is using too much RAM and is swapping to disk.

Once log-runtime-metrics is enabled, the log data can be analyzed and alerting can be set up for key

values. Once again, I recommend the Papertrail logging add-on for this.

Questions or comments? �27

https://github.com/noahd1/oink
http://guppy-pe.sourceforge.net/#Heapy
https://devcenter.heroku.com/articles/logging#syslog-drains
https://addons.heroku.com/papertrail
https://devcenter.heroku.com/articles/log-runtime-metrics
https://addons.heroku.com/papertrail
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Summary

In general, the source of R14 and R15 errors can be difficult to track down. If you have not quickly
found the cause of increased RAM usage, be prepared for an ongoing investigation into your
application. If you get to this point, don’t rule out any part of your application. I’ve seen many plugins
or third-party libraries turn out to be the source of an edge-case memory leak that happens over the
course of twelve or more hours. Isolating this type of bug is tedious, but the above tools and
information will help. 

Questions or comments? �28

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �29

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

My guess is that you’ve probably seen or heard of the H12 error code. An H12, also frequently
referred to as a timeout, is very common, simply because of the reason it occurs. The H12 error is the
result of a simple Heroku convention: there is a 30-second limit on all web requests. This may sound
arbitrary or too strict, but in reality any application that forces the user or client to wait more than a
few seconds is too slow. A single, long-running request can cause an H12 timeout, but so can a
series of shorter requests. In my opinion, a perfectly-tuned application would have all requests
running in 500ms or less. However, not every application is perfectly tuned when first deployed to
Heroku, so you are likely to see an occasional H12 for any application that handles a fair amount of
traffic and has requests that run longer than a few seconds.

Before we dive into the details of an H12, it's worth noting that certain types of requests should not be
handled within the normal request / response cycle of a web application running on Heroku:

• Image uploads, resizing, or processing

• Complex report generation

• Social graph calculations

• Third party API calls

• Sending email

The first item, image uploads, is a very common cause of H12s. Rails applications in particular make
it easy to accept image uploads. If your application receives an image upload, resizes the image or
otherwise manipulates it, then saves or moves the image elsewhere, it will at minimum take several
seconds to process each upload. This type of long-running request will significantly impact the
performance of the application, and will most likely cause H12 errors. For this reason, I want to note
that image uploads and image processing need to be handled via a background worker dyno. In most
cases, it's best to upload an image from the client directly to S3, then use a worker dyno to retrieve
the image from S3, process it, and store the results. Building this process will require more work up-
front, but it will save a lot of headaches later on as your application handles more and more traffic.

Questions or comments? �30

https://github.com/waynehoover/s3_direct_upload
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Details of an H12 Error

Now back to the H12 error. At first, it may be difficult to identify an H12. The reason for this is that
when an H12 is triggered, an HTTP 503 (Gateway Timeout) error will be returned to the client, which
by default shows up as an application error. After seeing the 'something went wrong' error page in
your application, you may be tempted to search the logs and look for a full stack trace, which would
indicate an exception at the application level. However, an H12 error is reported by the Routing layer
and is easy to spot. It will look like this:

heroku[router]: at=error code=H12 desc="Request timeout" method=GET path=/coupons \
host=debugging.herokuapp.com fwd=52.171.38.92 dyno=web.2 queue= wait= connect= \
service=30000ms status=503 bytes=0

I should note that the default application error page is not something you want customers to see, and
I recommend configuring a custom error page that will be shown when an H12 (or other Heroku
specific error) occurs.

Now that you know what to look for, let's start with a very simple example of how an H12 can occur.

As I mentioned earlier, by convention Heroku has a 30-second limit on all web requests. Note that this
limit is platform-wide and cannot be changed. An incoming request will first hit the Routing layer. The
Heroku Routing layer is designed to be very fast and simple. When a request comes in, the Routing
layer randomly selects a web dyno the application is running and passes the request to the dyno. At

this point, the 30-second timer starts. If the Routing layer does not receive a response from the dyno
within 30 seconds, the Routing layer cuts short the request and returns an HTTP 503 (Gateway
Timeout) error code to the client. Meanwhile, the dyno (or process within the dyno for concurrent
servers such as Unicorn) handling the request will continue to process until it completes the code
path. This effectively ties up the dyno (or process) and it will be unable to handle additional requests
until it completes. This introduces the possibility of requests queueing at the dyno level and additional
H12s.

Questions or comments? �31

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications
https://devcenter.heroku.com/articles/error-pages

With this in mind, imagine a request to your application that triggers a customer's password to be
reset, then an email is sent to the customer with a link to create a new password. If the service being
used to send email is down or running slowly, this request will 'hang' when attempting to send the
email, and will result in an H12 response after 30 seconds. The client will see an error, but depending
on the actual problem with the email service, the email may still be delivered, as the dyno handling
the request will continue processing.

This is obviously a simple example, but it should be clear that H12s can occur easily with a single
long-running action.

The H12 scenario becomes increasingly complex as you add more traffic to the application, and more
than one slow action. As traffic increases, and the number of slow actions increases, queueing at the
dyno level occurs, and requests that are normally very fast suddenly start to result in H12s.

It's worth noting that the Heroku Routing layer is big enough and fast enough that very rarely do
requests queue at the Routing layer itself. Queueing instead happens at the dyno level. And
remember that the Routing layer is stateless and does not know which of the application's dynos are
busy, or even if a particular dyno has any requests in its queue. The Routing layer simply and quickly
handles incoming requests, then passes the request to a web dyno and awaits a response.

It's worth repeating: the Heroku Routing layer is random and WILL route requests to a busy dyno. The
Routing layer does NOT know about any queue of requests at the dyno level. This may sound like a
flaw in the Routing layer, but the Routing layer was purposefully designed and built to function this
way.

Let's step back for a moment. There has been much discussion in the community about the Heroku
Routing layer. Some would argue that Heroku's Routing needs to change, or is otherwise flawed. I
disagree, but rather than get into the details and arguments here, I'll leave it to the reader to research
and come to your own conclusion. I do recommend the following articles as a good place to start
learning the details of Heroku's Routing architecture:

Questions or comments? �32

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

https://blog.heroku.com/archives/2013/4/3/routing_and_web_performance_on_heroku_a_faq

https://devcenter.heroku.com/articles/http-routing

http://aphyr.com/posts/278-timelike-2-everything-fails-all-the-time

Remember, once an H12 is triggered, the long-running request will continue to process, tying up the
dyno or process and potentially causing additional requests sent to the dyno to queue. This situation
is not so severe for application servers that are event-driven or have child processes - Node.js or
Unicorn for example. However if a single process application server such as Thin is being used, there
is no way to handle additional incoming requests save for a queue. Further H12s can happen simply
because the requests waiting in the queue have their 30-second timer running too.

It’s worth noting here that a concurrent web server such as Unicorn or Puma for Ruby, Gunicorn for
Python, or Node.js in general, will perform much better and be less susceptible to H12s and queueing
because each web dyno will have more than one process to handle incoming requests. A single
process web server, such as Thin, can only handle one request at-a-time and will see much more
queueing.

Let's walk through a more complex example, using a non-concurrent application server, where two
long-running requests will actually cause a 'fast' request to result in an H12:

Questions or comments? �33

https://blog.heroku.com/archives/2013/4/3/routing_and_web_performance_on_heroku_a_faq
https://devcenter.heroku.com/articles/http-routing
http://aphyr.com/posts/278-timelike-2-everything-fails-all-the-time
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

• an application is running two web dynos, web.1 and web.2

• four requests arrive at the same time, requests A, B, C, and D

• request A takes 2 seconds to process

• request B takes 20 seconds to process

• request C takes 9 seconds to process

• request D takes 2 seconds to process

• request A is randomly routed to web.1

• requests B,C,D are randomly routed to web.2

�

In the above example, request A is handled normally, and the web.1 dyno is freed up after 2 seconds
to handle additional requests. Meanwhile, requests B, C, and D were randomly routed to web.2, and
requests C and D are queued at the dyno level of web.2, waiting on request B. Once request B
finishes, request C is handled as it’s next in the queue. Request C will process normally, but the end
result is that request D will be cut short and an H12 will be returned, because request D will have
waited for 29 seconds while requests B and C were processed. Request D will actually start
processing, nearly finish, but will miss the 30-second cut-off at the Routing level. This is the danger of
slow requests! Request D is normally very fast, but will have already been in the queue for 29
seconds before it gets a chance to be processed, and the end result is an H12 for the client that
submitted request D.

Questions or comments? �34

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Obviously this is a simple example, but you can see how slow requests, even slow requests much
less than the full 30-second limit, can cause other queued requests to result in an H12. The more
traffic and dynos an application has the more complex the scenarios become.

Rather than get into more and more complex scenarios, I'm going to leave it to the reader to imagine
scenarios within their own application that could cause H12s. Remember that no application that runs
web dynos is immune to H12s.

When it comes to live production applications on Heroku, I've seen the full range of H12 scenarios.
From low-traffic applications encountering H12s because of a single slow action, to high-traffic
applications handling thousands of requests per second seeing a spike in H12s because one
frequently-requested action is running for 5 seconds instead of the normal 100ms. The most difficult
H12 scenarios to diagnose happen where a busy application has a number of slow actions in the 5 to
10 second range, where all are causing H12s and each action must be investigated and optimized.

Finding the Cause of H12 Errors

Now that you know how to spot an H12 and how it occurs, how do you diagnose the cause? How do
you determine which part of an app is running slow and causing H12s? The key is to find, then fix,
every slow action in your application. This is an iterative process that will continue through the life of
your application. As long as data, traffic, or code is changing in your application, you will need to
watch for long-running actions. A good way to start tracking H12s is to setup alerts in the logging add-
on used by your application.

Remember, if your application is sending email, processing payments, or doing other processing that
takes more than five seconds, these actions need to be moved to a background dyno for
asynchronous processing. Keeping these types of long-running tasks in the standard request /
response cycle is asking for trouble.

If you have the appropriate tasks running in the background and are still seeing H12s, the next step is
to limit the response time within the application using something like rack-timeout. The rack-timeout

Questions or comments? �35

https://github.com/kch/rack-timeout
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

library is Ruby-specific, but the same concept applies to other languages and frameworks. Limiting
the response time and raising or logging an exception is the best way to identify long-running actions.
Rack-timeout is a great example of how to approach limiting requests. Not only does it limit any
request from taking longer than 15 seconds by default, it also provides extra information about the
request. Once the long-running actions are caught and surfaced in the log stream via rack-timeout,
you can optimize and fix them, which will reduce or eliminate H12s.

Let’s look at the output of rack-timout more closely. Requests that take longer than the default 15
seconds will result in an exception, visible in the log stream:

app[web.1]: source=rack-timeout id=f40adf06fa2dd4137fd9265b0339981c age=329ms \
timeout=15000ms state=ready at=info
app[web.1]: Started GET "/coupons" for 173.0.4.85 at 2013-06-09 01:52:08 +0000
app[web.1]: source=rack-timeout id=f40adf06fa2dd4137fd9265b0339981c age=329ms \
timeout=15000ms duration=15009ms state=timed_out at=error
app[web.1]: Completed 500 Internal Server Error in 14984ms
app[web.1]:
app[web.1]: Rack::Timeout::RequestTimeoutError (Request ran for longer than 15 seconds.):
app[web.1]: app/controllers/coupons_controller.rb:7:in `sleep'
app[web.1]: app/controllers/coupons_controller.rb:7:in `index'
app[web.1]: source=rack-timeout id=f40adf06fa2dd4137fd9265b0339981c age=329ms \
timeout=15000ms duration=15013ms state=completed at=info
heroku[router]: at=info method=GET path=/coupons host=debugging.herokuapp.com \
id=f40adf06fa2dd4137fd9265b0339981c fwd="173.0.4.85" dyno=web.1 connect=2ms \
service=15024ms status=500 bytes=643

Notice in the above log data a Rack::Timeout::RequestTimeoutError exception is raised, and an HTTP

500 is sent back to the client. In this simple example we can see, via the second line, that the call to /

coupons is resulting in an H12. If this were a real application, I would open the source for the /coupons
action and look for reasons why it may be running slow. Once I’ve made optimizations or fixes, I
would deploy the changes and watch the logs to see if H12s continue.

In general, I recommend setting rack-timeout’s timeout value to 10 seconds or less, by overriding the
default. It makes no sense to use a timeout value of 28 seconds. The lower the better. And once your
app is tuned and every action is running fast, you can drop the timeout to 5 seconds or less.

config/initializers/timeout.rb - in seconds
Rack::Timeout.timeout = 10

Questions or comments? �36

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Also, there are other extremely useful pieces of information that rack-timeout provides. Take a look at
the line below, which is actually the first line from the above example.

app[web.1]: source=rack-timeout id=f40adf06fa2dd4137fd9265b0339981c age=329ms \
timeout=15000ms state=ready at=info

The above line is what rack-timeout will first emit when it sees a request. The first thing to note is the
age=329ms value. When a request first enters the Heroku Routing layer, it is given an HTTP header

called X-Request-Start, which has a timestamp. When rack-timeout first sees a request, after it has

passed through the Routing layer, makes it through the dyno-level queue, and finally reaches the
application, it will calculate the total time between X-Request-Start and the current time. In this
example, the request spent 329ms in the Routing layer and the dyno queue, before making it to the
application. If this value were high, say 5000ms (5 seconds) or higher, you would know that requests
are probably spending too long in the dyno-level queue.

The next line from rack-timeout is actually emitted when the request is interrupted at 15 seconds:

app[web.1]: source=rack-timeout id=f40adf06fa2dd4137fd9265b0339981c age=329ms \
timeout=15000ms duration=15009ms state=timed_out at=error

Note the duration=15009ms state=timed_out values, which indicate the request lasted just over 15

seconds and timed-out. When looking through log data, keep an eye out for requests with high age=

values and low duration= values. This would indicate that fast-running requests are spending too

much time in the queue. Remember, if a request that normally completes in 50ms spends 15 seconds
in the dyno-level queue, it would have an age= value of at least 15,000ms. And keep in mind that with
rack-timeout installed, requests that will result in an H12 even before leaving the dyno level queue are
dropped by rack-timeout and not processed by the application.

Also, note the id=xxxx value rack-timeout emits. This value is unique for each request, and is useful

for tracking or filtering requests when logs are extremely busy or verbose. In particular, this value can
be set via the http-request-id feature currently in Heroku Labs.

Questions or comments? �37

https://devcenter.heroku.com/articles/http-request-id
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Hopefully you can see that rack-timeout or a similar method will help to quickly pinpoint slow actions
in your application. By tailing your application's logs or using an add-on such as Papertrail, you will be
able to see which actions are encountering timeouts, determine the underlying issue, and fix.

One final tool that is useful for finding slow running actions that are the likely cause of H12s is New
Relic. In particular, New Relic has a feature that lets you view statistics on actions in a table format.
Here’s a screenshot of what it looks like, under the Monitoring / Web transactions tab, selecting the
Table view option on the right.

�

In the above image, note the Max(ms) column. When combined with the Count column, it’s easy to
see long-running actions that are being called frequently. If this application were experiencing H12
errors, I would start by looking at the HealthController#index action to see why it is running for more
than 20 seconds.

Questions or comments? �38

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications
https://addons.heroku.com/papertrail

Summary

Hopefully you can see that H12s are a complex topic. Sometimes there is an easy answer for why an
application sees H12s, sometimes the answer is not so easy. But using tools like rack-timeout and
New Relic, you can quickly identify possible causes and work to optimize an application. Keep in
mind that finding, fixing, and monitoring for H12s is an on-going process. And always remember that
slow responses are like poison to a Heroku application. They can have many side effects and even
one can cripple an application with performance issues.

Here's the bottom line:

Do everything you can to keep slow requests out of your application.

Questions or comments? �39

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �40

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �41

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Heroku Postgres is one of the most amazing services I've ever used. I say that not just as an
employee of Heroku, but as a former database administrator. I started with Access (yeah, I know),
moved to SQL Server, then on to MySQL, dabbled in CouchDB and MongoDB, before settling down
firmly with Postgres as my database of choice. The Heroku Postgres team operates one of the largest
fleets of Postgres servers in the world, and it's growing quickly. Some of the utilities and optimizations
developed by Heroku to manage these servers have actually made their way into the Postgres
codebase. And hardly a week goes by where I'm not amazed at what the Heroku Postgres team is
doing.

With the above praise out of the way, it can be difficult to keep track of all the helpful Postgres
features available to you as a developer. Here are a few scenarios that make Heroku Postgres so
amazing:

• Is your application suffering because of a slow or erratic database server? You can swap out the
database server for something twice as big, four times as big, or larger, with minimal downtime.

• Sending an important email that will bring a flood of traffic to your site? Is your new social coupon
site launching on TechCrunch? Did your Heroku-backed iOS app hit the top 10 in the App Store?
You can simply and quickly scale up the database (along with the dynos) for a few days to handle
the traffic, then scale back when ready.

• Need to test an important piece of code with a large production dataset? Create a Forked copy of
the data and point your new code at the Fork.

• Worried about backups of your data? Rest easy. Heroku Postgres has you covered in multiple
ways.

Questions or comments? �42

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications
https://postgres.heroku.com

Swapping-out the database server

If your database server needs to be replaced, for whatever reason, using a Follower is the preferred
method. Heroku uses the term 'Follower' to mean read-only replica. A Follower will stay in-sync with
the main database until it is manually stopped, or 'un-followed'.

Suppose you are running a Fugu database, but have noticed recently that performance is erratic. It
could be your application, but it could also be an underlying issue with the database server itself.
Database servers are backed by disk volumes that can be problematic. Why not easily eliminate any
server issues before digging into your application's code?

You can quickly add a Follower with this command -

$ heroku addons:add heroku-postgresql:fugu --follow COLOR_URL

The COLOR_URL above can be found via the the heroku pg:info command, and will be a different color

value for each database server.

Once the above command is run, a new Follower will spin up and be available shortly, depending on
the size of the dataset. You can check the status via the heroku pg:wait command. It's also worth
noting that large datasets (10 GB or more) may show as ready, but indexes will likely take longer to
fully rebuild.

Stop for a second and think about this. A fully-ready, in-sync read-only replica available in minutes
with one command. Those of you who have configured databases servers by hand will truly
appreciate how powerful this is.

Questions or comments? �43

https://devcenter.heroku.com/articles/heroku-postgres-follower-databases
https://postgres.heroku.com/pricing
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

When the new Follower is ready, make note of its COLOR value. Next, follow these steps to swap

servers:

1. Place the application in maintenance mode.
2. Be sure all processes are scaled to zero.
3. Un-follow the new Follower, which will make it stand-alone and write-able.
4. Promote the new database to be the main database.
5. Take the application out of maintenance mode.
6. Remove the older database.

Step two is worth noting. It’s important to turn off any process which could modify the database while
the application is in maintenance mode. I find it’s generally best to scale all processes to zero. You
can see the full output of this process here:

$ heroku pg:info
=== HEROKU_POSTGRESQL_VIOLET_URL (DATABASE_URL)
Plan: Crane
Status: available
Data Size: 6.5 MB
Tables: 2
PG Version: 9.2.4
Connections: 6
Fork/Follow: Available
Created: 2013-05-15 02:24 UTC
Region: eu-west-1
Followers: HEROKU_POSTGRESQL_WHITE
Maintenance: not required

=== HEROKU_POSTGRESQL_WHITE_URL
Plan: Crane
Status: available
Data Size: 6.5 MB
Tables: 2
PG Version: 9.2.4
Fork/Follow: Unavailable on followers
Created: 2013-05-15 02:44 UTC
Region: eu-west-1
Following: HEROKU_POSTGRESQL_VIOLET
Behind By: 0 commits
Maintenance: not required

Questions or comments? �44

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

$ heroku maintenance:on
Enabling maintenance mode for debugging... done

$ heroku ps:scale worker=0
Scaling worker dynos... done, now running 0

$ heroku pg:unfollow HEROKU_POSTGRESQL_WHITE_URL
! HEROKU_POSTGRESQL_WHITE_URL will become writable and no longer
! follow HEROKU_POSTGRESQL_VIOLET. This cannot be undone.
! WARNING: Destructive Action
! This command will affect the app: csrbuddy-eu
! To proceed, type "debugging" or …

> debugging
Unfollowing HEROKU_POSTGRESQL_WHITE_URL... done

$ heroku pg:promote HEROKU_POSTGRESQL_WHITE_URL
Promoting HEROKU_POSTGRESQL_WHITE_URL to DATABASE_URL... done

$ heroku maintenance:off
Disabling maintenance mode for debugging… done

$ heroku addons:remove HEROKU_POSTGRESQL_VIOLET

! WARNING: Destructive Action
! This command will affect the app: debugging
! To proceed, type "debugging" or …
> debugging
Removing HEROKU_POSTGRESQL_VIOLET on debugging… done, v26 ($50/mo)

With the above steps, it's easy to swap-out the older database server. It's encouraged, and it's even
the recommended way to upgrade versions when Heroku releases a new point-version of Postgres.

As you will see next, this swap-out process is the basis for other database operations on Heroku.

Questions or comments? �45

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Scale up or down with a Follower

Taking the above Follower process one step further, imagine you are needing to scale up (or down)
based on changing traffic. You can Follow an existing database with a different database size. You
can even migrate from a Crane - the smallest production database, to a Mecha - the largest
production database, via the Follower command. Migrating from a Mecha down to a Crane is also
possible, or to any size in between.

This feature is so powerful that I want to stop and make note of it. I'm not aware of any other
database service that does this as simply and powerfully as Heroku. There have been numerous
times where customers have contacted support asking for help dealing with a large surge in traffic.
Using a Follower to upgrade has saved many applications from being overwhelmed by traffic.

And the best part of all this database swapping? You will only pay for the time-used for each server.
Even the larger servers are only a few dollars per day, and even less per-hour.

Questions or comments? �46

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Using a Follower as a read slave

The most common use for a Follower is as a read slave in read-heavy applications. A great example
of this is Heroku’s internal billing system. At a basic level, the billing system continuously tracks
events in a Postgres database. Heroku needs access to billing data in the form of reports, which are
read-heavy. Running read-heavy operations against a write-heavy database is not good for
performance, so reports are run against a Follower, which is effectively a read-slave. This enables
Heroku to build near real-time reports while decreasing load on the main database used to track
billing events.

Some applications are so read-heavy that it makes sense to use more than one Follower as a read-
slave. This is known as sharding, and is one way to scale an application horizontally. One common
example is using a Follower (or shard) for a pre-defined group in your application’s data. For
instance, it may make sense to split your customer data into two groups by last name, A through M
and N through Z. You could then add two Followers to your application, and customer specific read
operations would be sent to one of two Followers, depending on the customer’s last name. To take
advantage of a Follower, support will need to be added via code at the application level. If your
application is built using Rails, you can use the Octopus library to enable ActiveRecord support for
sharding via Followers.

In some cases, it can even be beneficial to use different sized Followers for read slaves. The main
application database might be an Ika, but have several smaller Crane Followers to handle sharded
read operations.

Questions or comments? �47

https://github.com/tchandy/octopus/wiki/Replication-with-Rails-on-Heroku
https://postgres.heroku.com/pricing
https://postgres.heroku.com/pricing
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Forking a database

Creating a Fork is a feature unique to Heroku Postgres. A Fork is a point-in-time copy of a database.
Forks are useful for testing, staging, and other situations where you need a copy of data but do not
wish to modify the main database.

A common use of a Fork is a staging application. Perhaps you have a new set of features you'd like to
test against production data, but you don't want to modify the production environment. You can Fork
your production database to your staging application, as long as your Heroku account has access to
both. This saves time, as the other way to do this, copying data from production to staging, would
involve restoring a pgbackup from one application to another, something that is time-consuming for
large datasets. With a Fork, you can do this with one command.

$ heroku pg:info -a debugging-staging
debugging-staging has no heroku-postgresql databases.

Above, you can see the debugging-staging application does not have a database, but we will create

one by Forking another application's main database.

$ heroku pg:info -a debugging
=== HEROKU_POSTGRESQL_CHARCOAL_URL (DATABASE_URL)
...

We'll need only the COLOR name of the existing database for the Fork command.

$ heroku addons:add heroku-postgresql:crane --fork \
debugging::HEROKU_POSTGRESQL_CHARCOAL_URL \
-a debugging-staging

Adding heroku-postgresql:crane on debugging-staging... done, v3 ($50/mo)
Attached as HEROKU_POSTGRESQL_AMBER_URL
Database will become available after it completes forking
Use `heroku pg:wait` to track status.
Use `heroku addons:docs heroku-postgresql:crane` to view documentation.

Questions or comments? �48

https://devcenter.heroku.com/articles/heroku-postgres-fork
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

The above Fork command creates a new database on the debugging-staging application that is a Fork

of the debugging application's main database. After waiting for the Fork to come online, via the heroku

pg:wait command, we can see the new database.

$ heroku pg:info -a debugging-staging
=== HEROKU_POSTGRESQL_AMBER_URL
Plan: Crane
Status: available
Data Size: 6.5 MB
Tables: 2
PG Version: 9.2.4
Connections: 3
Fork/Follow: Available
Created: 2013-05-16 14:02 UTC
Forked From: Database on ec2-54-228-194-85.eu-west-1.compute.amazonaws.com ...
Maintenance: not required

The new Fork is now ready for use by the debugging-staging application. You might have noticed

something interesting in the above commands. The debugging application is running the Heroku EU

Region, along with its main database, and the Fork was created in the Heroku US Region. With one
command, we created a copy of the data in another geographic location. This is a very powerful
feature.

Questions or comments? �49

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Backups

Backups are another area where Heroku Postgres simplifies database maintenance. Heroku uses
Continuous Protection to always protect your data. Simply put, Continuous Protection is the process
of archiving Postgres WAL files to Amazon S3 for long-term storage. WAL is an acronym for for Write-
Ahead Logging. You can see the source code for the Continuous Protection process here. The WAL
file archiving happens every 60 seconds, so in a worst-case scenario, where Heroku would need to
rebuild your database from the archived WAL files, you might lose 60 seconds of data (in my
experience it's often much less than 60 seconds).

Continuous Protection is a great first-level backup. If you want another level of backups for your data,
take a look at the pgbackups:auto add-on. This add-on will automatically backup your data in pg_dump

format and store it on S3, where you can view the files and even download them for storage
elsewhere.

Here's a sample of what the heroku pgbackups command does:

$ heroku pgbackups -a debugging
ID Backup Time Status Size Database
---- ------------------- --------------------------- ----- ------------
a080 2013/05/13 04:56.20 Finished @ 2013/05/13 ... 5.7KB DATABASE_URL
a081 2013/05/14 04:58.36 Finished @ 2013/05/14 ... 5.7KB DATABASE_URL
a082 2013/05/15 04:58.56 Finished @ 2013/05/15 ... 5.7KB DATABASE_URL
a083 2013/05/16 05:44.54 Finished @ 2013/05/16 ... 5.7KB DATABASE_URL

Each of the a08X entries in the above table are an auto-backup. You can download a backup via a
URL:

$ heroku pgbackups:url a083 -a debugging
"https://s3.amazonaws.com/hkpgbackups/appxxxx@heroku.com/a083.dump?

AWSAccessKeyId=xxxx&Expires=1368714467&Signature=N8Vr0o3I5rdMVgoPILmZt3O%2FrjA%3D"

Note the above URL is public, but it will timeout and be unavailable after a few minutes. Using the
above process, you could build a simple script to perform a daily download and store the data offsite.

Questions or comments? �50

http://www.postgresql.org/docs/9.2/static/wal-intro.html
http://www.postgresql.org/docs/9.2/static/wal-intro.html
https://github.com/wal-e/wal-e
https://addons.heroku.com/pgbackups
https://s3.amazonaws.com/hkpgbackups/appxxxx@heroku.com/a083.dump?
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

PGExtras plug-in

The Heroku Postgres team is always improving the service and will often release utilities that make
using the service easier. One of these utilities is the pg-extras plugin.

There are a variety of useful commands in pg-extras, but one of my favorites for debugging an
application's performance is the pg:cache_hit command.

$ heroku pg:cache_hit -a debugging
 name | ratio
 ----------------+------------------------
 index hit rate | 0.99006561935013432170
 cache hit rate | 0.99768566842236281761
 (2 rows)

You can see the index and cache hit rates are 99% or above. In general, anything below 99% means
the database server is working too hard and probably needs either better indexes or an actual server
upgrade for more cache.

Summary

As you can see, Heroku Postgres is a powerful service that offers flexibility with your application's
database not previously possible. With Fork and Follow new development workflows are possible. Be
sure to give the Fork and Follow commands a try. There's no reason not to, and you will only pay for
time-used. 

Questions or comments? �51

https://github.com/heroku/heroku-pg-extras/
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �52

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

New Relic is one of the most valuable and helpful tools I know of. If you're not aware of New Relic, or
how it can help your application, I would suggest starting at NewRelic.com. At a basic level, New
Relic provides visibility and metrics for how your application is performing. New Relic is so helpful that
without it I feel blind when trying to asses the overall health or investigate a performance issue for an
application.

New Relic is available as an add-on for nearly all Heroku applications. Ruby on Rails was the first
framework supported, but now Python, Node.js, and Java applications are supported. Unless you
have no need for visibility and metrics into how your application is performing, I recommend every
application make use of at least the free New Relic add-on.

Installing New Relic is easy. First you need to enable the add-on:

$ heroku addons:add newrelic:standard

Once enabled, you will need to configure your application to make use of New Relic. There are
instructions in this Dev Center article. When you have made the necessary configuration changes to
your application and deployed, New Relic will immediately begin gathering data as your application
runs.

Your application's communication with New Relic is done asynchronously, which means you do not
need to be worried about New Relic affecting performance. This is another reason I recommend
every application use New Relic.

Overview Page

Once enabled and gathering data, you can open New Relic for an application with this command:

$ heroku addons:open newrelic

When first opened, New Relic will show an overview of how an application is performing. Here's an
example:

Questions or comments? �53

http://www.newrelic.com
https://addons.heroku.com/newrelic
https://devcenter.heroku.com/articles/newrelic
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

�

The first thing you will notice is the large chart titled 'App server response time.' This chart shows an
average of response times over the pre-defined timeframe. To see the timeframe, look to the upper
right for a message such as 'Last 30 minutes Ending Now'. This indicates the timeframe New Relic is
currently displaying.

It's worth noting the timeframe can lead to some confusion when trying to synchronize past events,
such as log timestamps, with chart data. I like to set the timezone to either the timezone I am
currently in or UTC. The Heroku log stream uses UTC for timestamps. With this in mind, here’s how
to adjust the timeframe:

Questions or comments? �54

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

�

Note the ‘Change it’ link at the bottom center.

The next chart is the 'Apdex score' in the upper right. This is a measurement of how well the
application is performing for end users. You can hover over the ? next to the title of the graph for a
more detailed explanation, but in general an Apdex score of 0.9 or above means the application is
performing well.

The final overview graph is the Throughput measurement. New Relic uses RPMs, or Requests Per
Minute, as its measurement of throughput. This is different than requests per second, another
throughput measurement commonly used in load testing.

Questions or comments? �55

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

How else can New Relic be helpful? Here are a few examples:

• Comparing performance before and after a code deploy

• Tracking and notification of application exceptions

• Monitoring database throughput and performance

• Measuring, reporting, and tracing slow web or database transactions

• Measuring, reporting, and tracing slow database transactions

• Identifying traffic patterns over time

• Measuring third party API performance

Example

I'm going to highlight 'Measuring, reporting, and tracing slow web transactions', as it's one of the most
valuable features of New Relic.

Many times, customers will come to Heroku Support saying "my app is running slow, and nothing
changed." The very first thing I do in this situation is look at New Relic. And if the application does not
have New Relic installed, I'll ask the customer to install at least the free add-on before going any
further. Also, it’s worth noting that ‘nothing has changed’ is incorrect. There are many moving parts in
even a simple application. New Relic can help find what changed.

I usually start by setting the timeframe to 12 or 24 hours. The default timeframe of 30 minutes is not
really helpful when investigating this type of issue.

Once the timeframe is set, I start with the main 'App server response time' chart. If the application is
running slow, it will usually show here as spikes in response time. It's often possible to determine the
cause of slowness just by looking over the main chart. For instance, if there is a noticeable increase
in database time, this can indicate the database is slowing down the application. Other common
problems include slow external services (usually a third party API), or even a slow caching layer such
as Memcache or Redis.

Questions or comments? �56

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

�

Notice in the above chart, at 05:00, that database times spiked and caused the application to briefly
slow down. It’s also clear that as time progresses, this application is spending more and more time in
the database. In the above chart, the database times actually see an increase of 400% over the
course of two hours, from ~ 100ms to ~ 400ms. The application is still running fast, but if the 400%
increase was from 1 second to 4 seconds, I would be concerned. This would be an indication the
database server is under-powered or not indexed correctly.

If nothing stands out on the main chart, I'll look at the 'Web transactions' section next, under the
Monitoring tab. The default sort, 'Most time consuming', is often enough to show which action(s) are
problematic. Next, I'll click on the top action listed to get more detail. From here, it's possible to get
even more details on the slow action, such as recent slow web transaction traces. Here’s an example
of a slow web transaction trace:

Questions or comments? �57

https://devcenter.heroku.com/articles/postgresql-indexes
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

�

You can see that tickets/_update.html.erb is causing the transaction to run slowly, taking 1.5 seconds
in this particular trace. Now we know at least one area that needs to be investigated and fixed.

At this point it's worth noting that some of New Relic's more advanced and helpful features require the
paid version of the add-on. My suggestion, if you are running a true production application and need
the performance analysis, is to pay for the New Relic add-on. It's expensive, but worth it. If cost is an
issue, then I suggest upgrading for a few days while you investigate an issue, then downgrading to

Questions or comments? �58

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

the free plan when finished. You’ll only pay for time used, and this is part of the flexibility Heroku add-
ons provide.

Embedding Charts

New Relic has a nice built-in feature that allows you to create custom dashboards from charts or
tables found throughout the site. These dashboards are handy, but sharing them with someone else
requires the person to have a New Relic account. This is not always possible. However, it's still easy
to share charts via the 'embed' link. Simply hover over a chart and look for an 'Embed' link in the
lower right. This will pop up a screen that has some HTML <iframe> code. You can copy this code, or
to share just the one chart, simply copy the the source URL and share. Here’s an example:

�

Questions or comments? �59

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

This feature is very handy when you want to share the current RPM chart of an application, but don't
want to grant access to all New Relic data. I make heavy use of this feature while working with
customers over an extended period of time, as a simple way to keep an eye on important application
metrics. I’ve also seen applications with a custom, admin-only status page, where select New Relic
graphs are embedded in a page that can be easily shared with application owners.

Summary

Hopefully you see that New Relic is an invaluable tool for monitoring and measuring your
application’s performance. When creating a new application, it's one of the first add-ons I implement.
New Relic may seem complex and unnecessary at first glance, but once you've used it for a bit, you
will keep coming back. The breadth and depth of what it measures and reports is almost un-matched.

Questions or comments? �60

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �61

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

The Heroku service has many conventions. An example of this is using git push for deploys. When

you deploy code to an application via git push heroku master, the process of creating a release and

starting the application is known as compiling the slug. Cedar is the default Heroku stack, however
Cedar does not have a default language. Instead, when you deploy an application, scripts are run to
determine the correct language or framework, and the application is then complied into a slug using a
buildpack and your application’s code.

It's the buildpack that defines how the application will run and what resources are available. Heroku
provides a handful of common buildpacks that you can use, such as the Ruby or Node.js buildpack.

The interesting thing about buildpacks is that they are open source and customizable. Creating or
modifying a custom buildpack is how you are able to customize Heroku to fit your application's needs.
Custom buildpacks make it possible to define and run nearly any type of language, framework, or
even single binary programs on Heroku. Remember, Heroku is just Unix. Buildpacks have their own
simple API and can even be chained together.

But so what? You may already know about custom buildpacks. Perhaps you think custom buildpacks
are a nice idea, but you're not sure how they can be used practically. Let's look at a great example of
how a custom Ruby buildpack can save you both time and money.

Example - Hacking the Rails Asset Pipeline

I'm not sure how else to say it, but the Rails Asset Pipeline is cumbersome and frustrating. I agree
that compiled assets are necessary, but the default implementation of the Rails Asset Pipeline is
confusing. Rails 4 introduces a few changes to the Asset Pipeline that make it better, but with Rails
3.x the Asset Pipeline remains confusing, and this example focuses on Rails 3.x applications. The
options for when to compile assets are minimal, and with Heroku most developers choose to compile
assets during a deploy, rather than locally or during runtime. This is option is detected by the Ruby
buildpack and handled by running the rake assets:precompile task near the end of the slug
compilation process.

Questions or comments? �62

https://devcenter.heroku.com/articles/slug-compiler
https://devcenter.heroku.com/articles/cedar
https://devcenter.heroku.com/articles/buildpacks
http://www.rdegges.com/heroku-isnt-for-idiots/
https://devcenter.heroku.com/articles/buildpack-api
http://www.neilmiddleton.com/the-composability-of-buildpacks/
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

You might have noticed output like the following during a deploy:

-----> Preparing app for Rails asset pipeline
 Running: rake assets:precompile
 Asset precompilation completed (35.29s)

35 seconds is actually fast for asset compilation. The above time is the actual output for a deploy to
the CSRBuddy.com application, and the number of assets in-use is minimal. As an application adds
more and more assets, compile time will get longer and longer. It's not uncommon for assets to take
several minutes to compile, and I've personally seen assets:precompile take ten minutes or longer.

It's worth noting that the slug compile process is limited to 15 minutes, so if asset compilation is taking
too long, it's possible it will cause a deploy to fail.

If you are deploying a simple change to your application, and none of the assets have changed, this
re-compile is a waste of time. And if you deploy frequently, as many developers do with Heroku, the
compilation time begins to add up.

Fortunately, there is a way around this, using a custom Ruby buildpack. And it just so happens that
somebody in the Heroku community has done the work for us.

Before diving into the code details, it's worth noting that buildpacks are given a cache directory during
the compile process - https://devcenter.heroku.com/articles/buildpack-api#caching. It's this cache
directory that will help us skip asset compilation.

Questions or comments? �63

https://www.csrbuddy.com
https://devcenter.heroku.com/articles/slug-compiler#time-limit
https://devcenter.heroku.com/articles/buildpack-api#caching
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Take a moment to review this pull request to the Heroku Ruby buildpack - https://github.com/heroku/
heroku-buildpack-ruby/pull/96. The pull request is simple but effective. The key method is here -
https://github.com/heroku/heroku-buildpack-ruby/pull/96/files#L2R98 - and I've listed the code below:

Have the assets changed since we last pre-compiled them?
def precompiled_assets_are_cached?

uncompiled_cache_directories.all? do |directory|
run("diff #{directory} #{cache_base + directory} \
--recursive").split("\n").length.zero?

end
end

See how this buildpack uses the Unix diff command to check for changes to the assets? If there are

changes to any assets, rake assets:precompile will run and store the compiled assets in the

buildpack's cache directory. If there are no changes detected, the cached copy of the assets is used,
thus saving time.

If you have a Rails 3.x application on Heroku and want to try this optimized buildpack, simply add this
config variable:

$ heroku config:add \
BUILDPACK_URL=https://github.com/nthj/heroku-buildpack-ruby.git#precompile-optimizations

Once ready, deploy your application. You should notice the new buildpack being used as part of the
first output of the slug compile process:

-----> Fetching custom git buildpack... done

Keep in mind that the first time you deploy with this custom buildpack, the rake assets:precompile task

will run normally, but the results will be cached. Once finished, go ahead and make a minor change to
the application, one that does not affect the assets. Then deploy again, and watch for this:

-----> Preparing app for Rails asset pipeline
 Assets already compiled, loading from cache

With the CSRBuddy.com application, deploys now run approximately 35 seconds faster.

Questions or comments? �64

https://github.com/heroku/heroku-buildpack-ruby/pull/96
https://github.com/heroku/heroku-buildpack-ruby/pull/96
https://github.com/heroku/heroku-buildpack-ruby/pull/96/files#L2R98
https://github.com/nthj/heroku-buildpack-ruby.git#precompile-optimizations
https://www.csrbuddy.com/
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

In my opinion, this asset pipeline optimization perfectly illustrates the power and flexibility of Heroku
buildpacks.

But what else can buildpacks do? Here are few buildpacks I find interesting and know to be helpful:

This buildpack allows you to chain multiple buildpacks together to combine functionality. Again, this is
called 'composability'.

Want to manage your Postgres connections at the dyno level? You can do so via the pgbouncer
buildpack.

You can run Nginx on Heroku via this buildpack.

Finally, there is an official list of third party buildpacks here.

Anvil

There is yet another way Heroku can be customized. Suppose your application needs additional
binaries to function correctly. This could be any binary, but to keep this example simple let’s say your
application needs the wget binary for downloading files.

When building a binary to run within your application, it’s important to keep in mind the underlying
architecture used by Heroku. All Heroku dynos run on 64 bit Linux, so you will need to build on a
similar system. Of course similar systems are not exactly the same as Heroku, so if you build a binary
locally in OS X, there is no guarantee it will function correctly on Heroku.

The way around this is to build the necessary binary via Anvil, a build-as-a-service running on
Heroku. Using Anvil, it’s possible to fetch the source package for wget, then compile and build the

binary on Heroku. The final result is a compressed package containing the wget binary which will run
on Heroku.

Anvil provides several options for building, including using a local directory, a public Git repository, a
custom buildpack, and even a shell script via URL. We’ll use the last option for this example,
providing a shell script via a gist. The shell script starts with the assumption the wget source package

Questions or comments? �65

https://github.com/ddollar/heroku-buildpack-multi
https://github.com/gregburek/heroku-buildpack-pgbouncer
https://github.com/ryandotsmith/nginx-buildpack
https://devcenter.heroku.com/articles/third-party-buildpacks
https://github.com/ddollar/anvil-cli
https://gist.github.com/pdsphil/4c604dd53d1b9df09108
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

has been extracted and its contents are available in the current directory. With that in mind, here’s the
shell script to compile wget with Anvil:

#!/bin/sh
root=$(pwd)
mv wget-* /tmp/wget
cd /tmp/wget
./configure --without-ssl
make
mv src/wget $root/

Notice at the end the wget binary is moved to the $root directory. This step is essential, otherwise the
build result will not be available for use later. Let’s look at a full example:

First, we’ll verify that wget is not present on a new dyno.

$ heroku run bash
Running `bash` attached to terminal... up, run.5543
~ $ wget
bash: wget: command not found

Now, we’ll use the anvil command to build wget, providing the full URL of the wget source package

along with the build script.

$ anvil build http://ftp.gnu.org/gnu/wget/wget-1.14.tar.gz \
-b https://gist.github.com/pdsphil/4c604dd53d1b9df09108/raw/build-wget.sh

Launching build process... done
Preparing app for compilation... done
Fetching buildpack... done
Detecting buildpack... done, Custom
Fetching cache... empty
Compiling app...
configure: configuring for GNU Wget 1.14
...
Putting cache... done
Creating slug... done
Uploading slug... done
Success, slug is https://api.anvilworks.org/slugs/5e30cc21-083c-4b49-8aed-db7ab2c3436c.tgz

When you run anvil build, the entire build output is shown, but I’ve omitted it from the example

above. Notice the end result is a slug URL. Let’s test the resulting slug via our heroku run bash dyno.

~ $ curl https://api.anvilworks.org/slugs/5e30cc21-083c-4b49-8aed-db7ab2c3436c.tgz | tar xzv
~ $./wget --version
GNU Wget 1.14 built on linux-gnu.

Questions or comments? �66

https://api.anvilworks.org/slugs/5e30cc21-083c-4b49-8aed-db7ab2c3436c.tgz
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

With the above in mind, it’s easy to see how a custom binary can be configured, built, and included
within your application. Extending this idea a step further, a custom buildpack could easily include
calls to download pre-built binaries from Anvil, making the binaries available to the application.

Anvil has more advanced commands, including the ability to compile an application slug, and deploy
the slug to various applications, bypassing the normal slug compile process. This creates some
interesting workflow possibilities, but I’ll leave those to you. Have a look at the Anvil project on GitHub
for more examples.

Summary

Custom buildpacks are a powerful feature that allow you to customize Heroku to fit your needs. And
with buildpack composability, it's possible to quickly build custom functionality using freely available
buildpacks that others in the community have released. Add to this the ability to remote build binaries
and buildpacks via Anvil, and it’s easy to see how quickly Heroku can be customized. Customers are
always surprising Heroku with new and innovative buildpacks. If you build something clever or useful,
let us know!

Questions or comments? �67

https://github.com/ddollar/anvil-cli
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �68

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

My goal in writing this guide was to provide clear examples and helpful tips for developers running
applications on Heroku. Hopefully, through the tips, debugging examples, and scenario walk-
throughs, you now have a better understanding of how to run and support production applications on
Heroku.

I’ve seen some amazing applications built on Heroku. If this guide helps your team, project, or
application in some way, be sure to let me know! I love hearing stories about creative and unique
ways the Heroku platform is being used.

It would be impossible to cover every scenario or possible issue in a single guide, so if you have
questions or would like to see another topic explained, feel free to click the link at the bottom of this
page and provide feedback. I do my best to respond to all emails, though it may take some time.

Thanks!

Questions or comments? �69

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Questions or comments? �70

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

I spent the first two years working at Heroku as a member of the Support team. It’s a small team
(eight engineers as I write this), but it supports well over a million applications.

Your interaction with Heroku Support, if any, has probably happened via the ticketing system at
https://help.heroku.com. I've probably answered at least one of your tickets if you've created one in
the past two years. Hopefully I did a good job. The team does its best to be helpful, but all of us are
human and make mistakes, so please keep that in mind the next time you interact with us.

Below are a few tips for interacting with the Heroku Support team. None of these are official, and
some will change over time. Think of the following tips as something I would tell you were we
discussing Heroku Support over drinks or a meal:

Create a ticket using the Heroku account that owns or is a collaborator on the application in
question.

Support uses the account to look up further information about the application and attaches the data to
the ticket. This helpful data will not be present if you submit a ticket via a personal email account with
no access to the application.

If at all possible, grant access to look at the application's code.

The support team is not able to debug application specific issues, but having access to check
configuration and initialization files is very helpful.

Include log data if applicable.

There's a reason the heroku logs command is the first chapter in this guide. Without the log data, it

can be difficult or impossible to diagnose the issue. And the support team is often unable to look at
older log data. The correct snippet of log data included with a ticket can help resolve the issue quickly.

Questions or comments? �71

https://help.heroku.com
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Heroku's support hours are 6 AM to 6 PM Monday through Friday, Pacific time.

Support does its best to respond to your ticket within one business day. Yes, this means that if you
submit a ticket on Saturday, you will probably not get a response until Monday. There are Premium
support plans if you require a 24/7 SLA response.

If you have more than a handful of lines of code or log data to share, use a gist.

It's very difficult to track longer tickets when there are dozens or hundreds of lines of code or log data
interspersed with dialogue. Also, please do not include passwords or credentials to databases or add-
ons. If you do accidentally include a set of credentials, you'll likely be asked to change them.

Support issues are not handled via Twitter.

Twitter does not work well for complicated issues. At best, someone will respond to your question or
issue and ask you to open a ticket.

If you are debugging a strange issue, be sure to include steps to reproduce the issue.

A simple curl command is often enough. In particular, the curl -I command is useful when debugging

asset caching issues. If the issue can be reproduced via a series of steps in a web application,
include those steps along with a test account if needed.

Get to know Markdown, if you don't already.

The ticketing system supports markdown, and it will help to properly format code or terminal output.

Questions or comments? �72

https://gist.github.com
http://daringfireball.net/projects/markdown/syntax
mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

Prioritize your ticket correctly.

'Urgent' means your production site is down, not that you are unable to deploy to staging or you have
a question about SSL. If you have a Premium support plan, using an Urgent status will trigger alerts
and page an on-call engineer, including waking them up. I understand how frustrating it can be to run
into an error with your application in the middle of the night or over the weekend, but please, please,
please use 'Urgent' carefully.

Don't be surprised if you see several members of the support team answering your ticket.

The team discusses various issues and tickets throughout the day, and often hand off a ticket or jump
in with answers when needed.

Questions or comments? �73

mailto:pdsphil@gmail.com?subject=Feedback%20for%20Optimizing%20Heroku%20Applications

